88,977 research outputs found

    Review: The Powers of the Universe by Brian Swimme

    Get PDF
    This essay presents a review on Brian Swimme’s 3-DVD set of lecture series in the interdisciplinary field of philosophy, cosmology and consciousness. In the eleven 45-minute episodes of a systematic 9-hour immersive program, a set of 12 intercorrelated cosmological powers is proposed on the basis of modern scientific theory. A positive and life-affirming vision of human potential is attained together with a new level of ecological responsibility and relatedness. The interwoven cosmological paradigm compromises with two ancient eastern wisdoms

    Plasma Brain Dynamics (PBD): A Mechanism for EEG Waves Under Human Consciousness

    Get PDF
    EEG signals are records of nonlinear solitary waves in human brains. The waves have several types (e.g., α, β, γ, θ, δ) in response to different levels of consciousness. They are classified into two groups: Group-1 consists of complex storm-like waves (α, β, and γ); Group-2 is composed of simple quasilinear waves (θ and δ). In order to elucidate the mechanism of EEG wave formation and propagation, this paper extends the Vlasov-Maxwell equations of Plasma Brain Dynamics (PBD) to a set of two-fluid, self-similar, nonlinear solitary wave equations. Numerical simulations are performed for different EEG signals. Main results include: (1) The excitation and propagation of the EEG wave packets are dependent of electric and magnetic fields, brain aqua-ions, electron and ion temperatures, masses, and their initial fluid speeds; (2) Group-1 complex waves contain three ingredients: the high-frequency ion-acoustic (IA) mode, the intermediate-frequency lower-hybrid (LH) mode, and, the low-frequency ion-cyclotron (IC) mode; (3) Group-2 simple waves fall within the IA band, featured by one or a combination of the three envelopes: sinusoidal, sawtooth, and spiky/bipolar. The study proposes an alternative model to Quantum Brain Dynamics (QBD) by suggesting that the formation and propagation of the nonlinear solitary EEG waves in the brain have the same mechanism as that of the waves in space plasmas

    Hegel's Eurocentric Triads of Dialectics and its Transformation to Kelly's Planetary Paradigm

    Get PDF
    This article introduces Hegel's Eurocentric philosophy of dialectics in the 19th century and its transformation to Kelly’s planetary paradigm at the turn of the 20th-21st century. The new theory develops Hegel’s thesis—antitheses—synthesis to identity—difference—new-identity which is applicable for the entire human history, including the planetary era. The new triad generalizes Hegel’s mechanic view of nature by suggesting a dominant worldview which is featured by a series of tightening and converging dynamic fractal cycles

    Color Realism: True or Not?

    Get PDF
    Color realism refers to that things are colored, or colors are real. Although the view goes in a minority opinion, Byrne & Hilbert defend it based on the physical properties of color and the peculiarly assumed hue-magnitudes. However, hues are mind-dependent and cannot be used as a measure of the physical properties of things. As a result, the defense fails to justify the proposition of color realism

    Plasma Brain Dynamics (PBD): II. Quantum Effects on Consciousness

    Get PDF
    This article studies the quantum effect of the brain neuronal system on both normal and abnormal conscious states. It develops Plasma Brain Dynamics (PBD) to obtain a set of kinetic quantum-plasma Wigner-Poisson equations. The model is established under typical electrostatic and collision-free conditions in both the absence and presence of an external magnetic field. The quantum perturbation is solved analytically by employing a backward-mapping approach to the motion of electrons. Results expose that the quantum perturbation turns out to be zero at normal conscious states; but no more than 11% of the classical perturbation under assumed abnormal situations like a sudden head trauma, mood disorder, etc. The introduction of the magnetic field does not influence the results

    Filtering and control for unreliable communication: The discrete-time case

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the past decades, communication networks have been extensively employed in many practical control systems, such as manufacturing plants, aircraft, and spacecraft to transmit information and control signals between the system components. When a control loop is closed via a serial communication channel, a networked control system (NCS) is formed. NCSs have become very popular for their great advantages over traditional systems (e.g., low cost, reduced weight, and power requirements, etc.). Generally, it has been implicitly assumed that the communication between the system components is perfect; that is, the signals transmitted from the plant always arrive at the filter or controller without any information loss. Unfortunately, such an assumption is not always true. For example, a common feature of the NCSs is the presence of significant network-induced delays and data losses across the networks. Therefore, an emerging research topic that has recently drawn much attention is how to cope with the effect of network-induced phenomena due to the unreliability of the network communication. This special issue aims at bringing together the latest approaches to understand, filter, and control for discrete-time systems under unreliable communication. Potential topics include but are not limited to (a) multiobjective filtering or control, (b) network-induced phenomena, (c) stability analysis, (d) robustness and fragility, and (e) applications in real-world discrete-time systems

    Levinson's theorem for the Schr\"{o}dinger equation in two dimensions

    Full text link
    Levinson's theorem for the Schr\"{o}dinger equation with a cylindrically symmetric potential in two dimensions is re-established by the Sturm-Liouville theorem. The critical case, where the Schr\"{o}dinger equation has a finite zero-energy solution, is analyzed in detail. It is shown that, in comparison with Levinson's theorem in non-critical case, the half bound state for PP wave, in which the wave function for the zero-energy solution does not decay fast enough at infinity to be square integrable, will cause the phase shift of PP wave at zero energy to increase an additional Ď€\pi.Comment: Latex 11 pages, no figure and accepted by P.R.A (in August); Email: [email protected], [email protected]
    • …
    corecore